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Abstract 
Recent advances in Brain-Computer Interface (BCI) tech-
nologies include the development of techniques that allow 
humans to rapidly triage images using Rapid Serial Visual 
Presentation, or RSVP (Sajda et al., 2010). These techniques 
utilize machine learning approaches to analyze electroen-
cephalography (EEG) signals when a person sees a sparsely 
occurring target image. However, they are limited to tar-
get/non-target binary classification problems, and are sensi-
tive to the ratio of target to non-target images. In contrast, 
most practical image classification tasks have hundreds to 
thousands of classes, without any guarantees to when target 
images will be presented. In this paper we present a novel 
RSVP method which is not restricted to binary classification 
problems, and may be more robust to target/non-target ratio, 
which we call the Mismatch Rapid Serial Visual Presenta-
tion (M-RSVP) paradigm. M-RSVP is based on the differ-
ences in EEG signals between viewing images with match-
ing labels and viewing images with mismatched labels. We 
define the M-RSVP paradigm, present initial results ob-
tained from a single subject, and outline plans for further re-
search.  

 Introduction   

There are many critical tasks that require sorting large 
amounts of collected image data in order to identify rela-
tively few images of potential value that require further 
in—depth analysis. Ideally, this triage could be performed 
by an automated technology such as computer vision, 
which can tirelessly perform the task at a low cost relative 
to a human analyst. However, the performance of computer 
vision algorithms still does not compare to humans in 
many real-world image analysis tasks. Alternatively, some 
analysis tasks can be crowdsourced using a platform such 
as Amazon Mechanical Turk. Unfortunately, crowdsourc-
ing is not a solution for all image analysis problems. Some 
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image data, such as classified intelligence data or HIPAA-
protected health data, cannot be widely distributed. Some 
image analysis tasks may also require rare expertise. In 
these cases, it is important to be able to maximize the abil-
ity of human analysts to rapidly triage images.  

Background 
Recent advances in Brain-Computer Interface (BCI) tech-
nologies provided human analysts with the capability to 
triage images more rapidly using a paradigm called Rapid 
Serial Visual Presentation, or RSVP (Sajda et al., 2010). 
RSVP is a paradigm where images from two classes, a 
target class and a non-target class, are presented to human 
subjects at a rapid rate (> 1 Hz). When the subject sees an 
image from the target class, an event-related potential 
(ERP) called the P300 can be identified from EEG data. 
The P300 is a large positive deflection in the scalp voltage 
observable approximately 300ms post stimulus presenta-
tion (McCarthy & Donchin, 1981). While early BCI sys-
tems averaged EEG data across multiple trials to identify 
the P300, more recent approaches have shown the capabil-
ity to identify the P300 using single trials (Blankertz, 
Lemm, Treder, Haufe, & Müller, 2011). 
 While the RSVP paradigm has shown its utility as a 
method for image triage, it is not an ideal approach for 
integrating human analysts with computer vision for two 
reasons. First, RSVP is limited to the two-class problem of 
target vs. non-target images. In contrast, computer vision 
algorithms can provide hundreds or even thousands of po-
tential output classes. Second, RSVP is based on an odd-
ball paradigm requiring low probability target events 
(Polich & Margala, 1997). If too high a percentage of the 
stimuli are from the target class, the target is no longer 
sufficiently unusual to generate a detectable P300 re-
sponse. 
 To help address these issues, we have developed a novel 
BCI paradigm called the Mismatch RSVP (M-RSVP) in-



tended for integrating human analysts with computer vi-
sion for large-scale image analysis. In this paradigm, sub-
jects are serially presented with images paired with a su-
perimposed categorical label. This label either matches the 
contents of the image, or is a mismatched label that does 
not accurately describe the image (e.g., accurate/inaccurate 
labels provided by computer vision). By redefining the 
two-class problem from target/non-target images to match-
ing/mismatched categorical labels, M-RSVP should work 
with an arbitrarily large number of categories while still 
only requiring a binary classification of neural data. The 
need for categorical labels for M-RSVP provides a clear 
mechanism for integration with computer vision algorithms 
by using the computer vision to preselect a small subset of 
labels for each image. 
 In addition, M-RSVP is based on Stroop-style im-
age/word interference paradigms (see Bajo, 1988; Glaser & 
Düngelhoff, 1984; Pellegrino et al., 1977; Snodgrass & 
McCullough, 1986). Unlike the Oddball paradigm that the 
standard RSVP task is based on, Stroop interference tasks 
are less dependent on low-probability target events. As a 
result, M-RSVP may be less sensitive to target probability 
ratios. In this paper, we will define M-RSVP, present pre-
liminary results obtained from a single subject, and outline 
plans for further research in this area. 

Methods 

During M-RSVP, we provide subjects a rapid presentation 
of a series of stimuli consisting of individual images. A 
brief interval (0.25-1s) after each image is displayed, a 
paired categorical label is superimposed onto the image. 
After another brief interval the process repeats. Images and 
categorical labels from the stimuli were drawn from the 
Places2-365 image database, which consists of 365 cate-
gorical labels of locations, with 5,000-30,000 example 
images for each categorical label (Zhou, Khosla, 
Lapedriza, Torralba, & Oliva, 2016). A stimulus can either 
be a matching stimulus, where the paired categorical label 
accurately identifies the contents of the image (see Figure 
1), or a mismatched stimulus where the paired categorical 
label does not accurately describe the contents of the image 
(see Figure 2). We used a standard counting procedure, 
where subjects silently counted the number of mismatched 
stimuli that occurred in an experimental block.    

Experimental Details  
One subject (Male, 38 years old) performed ten 2-minute 
blocks of the M-RSVP paradigm. Stimuli, consisting of a 
single image and the corresponding label were presented 
sequentially for one second each, resulting in an overall 
presentation rate of 0.5Hz. This slow rate was chosen to 
minimize the overlap of the ERP signals but early pilot 

testing indicates that considerably more rapid presentation 
rates are possible. To further reduce ERP overlap, both 
image and category label onset were randomly jittered by 
up to ±100ms.  Eighty percent of the stimuli presented 
were matching stimuli, with the remaining 20% being 
mismatched stimuli. 
 EEG data were recorded at 256Hz using a Biosemi Ac-
tiveTwo system with 64 active Ag/AgCl electrodes. Verti-
cal (VEOG) and horizontal (HEOG) electrooculogram 
were recorded with VEOG electrodes centered superior 
and inferior to the left eye and HEOG electrodes placed 
along the outer canthus of each eye. In addition, reference 
electrodes were placed on both the left and right mastoid. 
 

 
 

Figure 1: Matching M-RSVP Stimulus. A brief interval after each 
image is displayed, a categorical label that describes the image is 

superimposed on top of the image.  

 
Figure 2: Mismatched M-RSVP Stimulus. A brief interval after 
each image is displayed, a categorical label that inaccurately 

describes the image is superimposed on top of the image.  

Analysis 
EEG data were re-referenced to averaged mastoids, high 
pass filtered at 0.1Hz and low pass filtered at 40Hz. The 
EEG data stream was then epoched into 1-second epochs 



timelocked to the onset of category label events. Averaged 
ERPs were generated for both the matching stimuli and 
mismatched stimuli, and an ERP showing the difference 
between these two ERPs was generated.  

Results 
The resulting ERPs can be seen in Figure 3. There appears 
to be a separation between the matching and mismatched 
stimuli starting at approximately 400ms after category la-
bel presentation.  

 
 
Figure 3: Averaged neural responses resulting from the M-RSVP 
paradigm. The blue ERP is the averaged neural response of the 

matching stimuli. The green ERP is the averaged neural response 
of the mismatched stimuli. The red ERP is the difference between 
the two. A red oval highlights a P300 response, and a blue oval 

highlights a likely N400 response in the red difference wave.  

Discussion 

While these results are preliminary, they are also very 
promising. First, an N400 response can be clearly seen in 
the neural data. The N400 response is characterized by a 
negative deflection in the voltage recorded at the scalp 
occurring 400ms after stimulus presentation. The N400 is 
evoked through semantic discrepancies in image or text 
stimuli (Kutas & Federmeier, 2011). While the N400 re-
sponse has seen much less interest in the BCI community 
than the P300 due to its much smaller amplitude (see Fig-
ure 3), there have recently been BCI paradigms developed 
that incorporate the N400 response (Jin, Allison, Zhang, 
Wang, & Cichocki, 2014; Van Vliet, Mühl, Reuderink, & 
Poel, 2010). There have also been BCI paradigms devel-

oped using error-related potentials, which are similar in 
amplitude to the N400 (Barachant & Congedo, 2014).  
 Second, while the data in this paper was collected at a 
very slow presentation rate (0.5 Hz), this was done to max-
imize separation of ERPs. Preliminary testing indicates that 
it may be possible to run the M-RSVP at a rate of up to 
2Hz. We note that M-RSVP will likely show higher levels 
of performance when the semantic distinctions between the 
categorical labels are broad. However, this may not be a 
major limitation, as previous work shows that computer 
vision provides higher performance than humans at fine-
grained recognition in domains with large numbers of cat-
egorical labels (Russakovsky et al., 2015).  

Future Work 
The immediate next step is to execute a full human-subject 
study that better validates the M-RSVP paradigm, and de-
fine the parameter space in which it is effective. After that, 
it will be necessary to test the M-RSVP paradigm as a 
closed-loop BCI with real time classification and feedback.  

Conclusion  

In this paper we introduced a novel BCI paradigm, which 
may have value for joint human and computer vision anal-
ysis of large image databases. While the results are prelim-
inary, they have several promising implications in joint 
human-computer image analytics. For example, M-RSVP 
could potentially be used in conjunction with Active 
Learning to iteratively update a computer vision system. In 
the future, we intend to integrate a paradigm such as this 
into a human-computer image analysis system such as the 
Cortically-Coupled Computer Vision system or the Hu-
man-AI Image Labeling system (Saproo et al., 2016).  
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